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Nanoparticle Knudsen layers in gas-filled microscale geometries
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Nanoparticles suspended in ambient air within microscale geometries form a Knudsen layer when diffusing
in a Brownian fashion toward a solid wall. More specifically, the particle number density adjacent to the wall
approaches a nonzero value proportional to the flux. An approximate theory for the coefficient of proportion-
ality as a function of the particle sticking fraction at the wall and the drift velocity normal to the wall is
compared to Langevin particle simulations. The resulting boundary condition enables accurate advection-

diffusion simulations of nanoparticle-aerosol transport.
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I. INTRODUCTION

In theoretical treatments of aerosol transport, the particle
number density adjacent to a solid boundary (a “wall”) is
almost universally considered to be zero [1]. While an excel-
lent approximation for micron-scale aerosol particles in am-
bient air or a similar gas, this assumption breaks down for
atmospheric aerosols of nanoparticles now used in experi-
ments [2]. Rather than vanishing at a wall, the particle num-
ber density approaches a nonzero value proportional to the
particle flux to the wall even when the probability that an
impacting particle sticks is unity. The presence of the wall
modifies the particle velocity distribution function from its
form in an unbounded medium within a few thermal stop-
ping distances of the wall. This affected region is referred to
herein as the “particle Knudsen layer” by analogy to the
Knudsen layer observed for gas molecules within a few
mean free paths of a solid or liquid surface [3,4]. The particle
Knudsen layer is investigated theoretically via the general-
ized Fokker-Planck equation [5] and computationally via
massively parallel Langevin (Brownian) particle transport
simulations [6]. It has been proved that the dynamics of a
heavy particle surrounded by light gas molecules is de-
scribed by these mathematically equivalent equations [7].

The interaction of a particle with a wall is a highly com-
plicated process and remains the subject of research. In his
pioneering experiments involving polystyrene latex (PSL)
particles incident on quartz surfaces either in vacuum or with
gas present, Dahneke [8] shows that the probability of an
impacting particle sticking to a wall typically depends on the
particle velocity. Generally, slower particles are more likely
to stick, and faster particles are more likely to bounce. At
speeds near the crossover from sticking to bouncing, the ex-
perimental observations can be approximately correlated by
a theoretical expression based on assuming that the particle-
wall binding energy and the coefficient of restitution are in-
dependent of the particle velocity. However, if the binding
energy is treated as an adjustable parameter in the theory, the
values from fitting the theory to the measurements are
roughly 1000 times larger than values based on van der

*Corresponding author. FAX: 505-844-6620. jrtorcz@sandia.gov

1539-3755/2008/77(3)/036302(7)

036302-1

PACS number(s): 05.40.Jc, 51.20.+d, 81.07.Wx, 85.85.+]j

Waals forces. Moreover, at higher speeds, the coefficient of
restitution is observed to be velocity-dependent. This behav-
ior apparently results from processes such as plastic defor-
mation of the particle or the wall, transformation of kinetic
energy into heat by internal friction, and radiation of energy
away from the impact site by surface or bulk waves in the
solid. The presence of gas introduces a further complication
in that the fluid drag on a particle depends on the distance to
the wall. This phenomenon is well understood for a con-
tinuum incompressible fluid. For example, when the particle-
wall separation equals the particle radius, the drag roughly
doubles [9]. When noncontinuum mean-free-path effects be-
come important (as for nanoparticle aerosols), this phenom-
enon is not well understood although slip may reduce its
importance. Other issues that increase the complexity of the
particle-wall interaction process include gas compressibility,
surface roughness, deposited or adsorbed material on the sur-
face, the charge state of the particle, and the probability dis-
tribution of particle velocities following reflection.

Herein, an idealized system is investigated that includes
the important physics but avoids the complexity and empiri-
cism associated with real particle-wall interactions. The drag
on the particle as it passes through the gas is taken to be
independent of the particle-wall separation, which is accurate
until the separation becomes small. If a particle does not
stick and thus reflects, the reflection is taken to be specular.
Two reflection processes are considered. In the first, a
velocity-independent sticking fraction is prescribed, and any
particle impacting the wall has this probability of sticking
regardless of its incident velocity. In the second, a cutoff
velocity is prescribed, and any particle impacting the wall
sticks if its normal incident velocity is less than this value.
The second process is more physically realistic than the
first [8].

II. GENERALIZED-FOKKER-PLANCK APPROXIMATION

An approximate theory for the behavior of particles in the
vicinity of a wall can be developed for these two reflection
processes. In brief, for a nonzero flux toward the wall, the
particle velocity distribution in the gas far from the wall is
applied at the wall, and the outgoing portion of the flux is
equated to the reflected part of the incoming portion of the
flux.
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Chandrasekhar [5] derives the generalized Fokker-Planck
equation for the dynamics of a particle in a fluid, Eq. (249)
of his treatise, given below in a slightly different notation:

IN 0 14 29 (0N
—+—-(uN)+——-(—vN)=c——-(—>. (1)
X Tou 27du Ju

Here, N is the particle velocity distribution function, ¢ is
time, X is position, u is particle velocity, v=u—U is particle
thermal velocity, ¢=(2kzT/m)"? is the most probable par-
ticle thermal speed when N is a Maxwellian distribution at
temperature T, kp is the Boltzmann constant, m=md’s/6 is
the particle mass, d is the particle diameter, s is the particle
mass density, U=F/f is the drift velocity, F is the total
nondrag force on a particle (e.g., F=mg is the force from a
gravitational acceleration of g), 7=m/ 3 is the particle stop-
ping time, B is the particle drag coefficient (force per unit
velocity), and D=c?7/2=kgT/ 3 is the Stokes-Einstein par-
ticle diffusivity [1]. The particle drag coefficient and all
quantities derived therefrom depend on the particle proper-
ties and the gas conditions. Herein, all particle and gas pa-
rameters are taken to be independent of time and position,
and the gas is taken to be motionless.

For this situation, the above equation has the following
time-independent solution:
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Here, n denotes particle number density, subscripts indicate
quantities that are independent of time and position, and the
arrow denotes the zero-drift-velocity limit (U—0). The zero-
drift-velocity solution is physically realizable only in the
limit of a small particle-number-density gradient, which en-
sures that regions of negative probability density occur only
at large velocities and thus are exponentially small. This so-
lution possesses the following moments for the particle num-
ber density, the particle number flux, the particle energy den-
sity, and the particle energy flux, the forms of which can be
interpreted in terms of advective transport, diffusive trans-
port, directed kinetic energy, internal energy, and enthalpy,
where D is the particle diffusivity, m is the particle mass, kg
is the Boltzmann constant, and T is the temperature:
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Although applicable only in unbounded space far from
any wall, this solution can be used nevertheless to construct
an approximate boundary condition for the particle number
density n of the following form, where f is termed the
“particle-flux coefficient” and 0 is the unit normal vector
pointing into the wall and out of the gas:

R on nc
n- nU—Dg =m. 9)

This particle-flux boundary condition is analogous to the
well-known velocity-slip and temperature-jump boundary
conditions [3], in which discontinuities in the tangential ve-
locity and the temperature between a wall and the adjacent
gas are taken to be proportional to the shear stress and the
heat flux, respectively, and to temperature-jump boundary
conditions at a condensing liquid-vapor interface [3]. The
particle-flux boundary condition and the advection-diffusion
equation, shown below, form a closed system of equations
that describes the transport of the particle number density n
rather than the particle velocity distribution function N [1]:

on 0 on
—+—-(nU—D—>=O. (10)
X

The particle-flux boundary condition is found by applying
the solution for unbounded space at the wall, equating the
outgoing portion of the flux to the reflected amount of the
incoming portion of the flux, where R[u] represents the re-
flection probability,

f N(—ﬁ~u)du=f R[u]N(n -u)du, (11)
—-n-u>0 nu>0

and rearranging the resulting expression into the form of Eq.
(9). The above approach can be applied to the two reflection
processes discussed above. The sticking-fraction reflection
process has R[u]=1-s and yields the below expression,
where U=U-1 is the normal drift velocity (positive into the

wall) and U=U/c denotes its normalized value:

1 —exp[- f]z]) (12)
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The cutoff-velocity reflection process has

R[u]=H[A-6-U,]

and yields the expression below, where H is the Heaviside
function, U, is the cutoff velocity, 0n=Un/ ¢ is its normal-
ized value, and Udz lA/n—lA]:
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1 —exp[— lA/i] —exp[— U]+ exp[- Uﬁ] + 7' 20(ertc[ U] + erfc[ U]) .

The above expressions exhibit appropriate limiting behav-
ior. When all particles stick (s=1 and U,— ), these two

expressions become identical. In this situation, when U— oo
(infinite drift into the wall), the particle-flux boundary con-
dition becomes f-(—Ddn/dx)—0, which is an expression
commonly used to represent advective outflow for large

Peclet numbers. When [A] — o with s<1, the particle-flux
boundary condition allows exponential decay in the upstream
direction (i.e., away from the wall). On the other hand, when

U — —o (infinite drift away from the wall), the particle-flux
boundary condition becomes n— 0, which enforces zero
concentration (and hence zero influx) at the wall.

It is convenient to characterize the cutoff-velocity reflec-

tion process using the “cutoff parameter” a:l—exp[—l}i]

in place of the normalized cutoff velocity l},,. The cutoff
parameter ¢ is similar to sticking fraction s in that o=1

(U,— ) and s=1 both correspond to all particles sticking,

and =0 (U,=0) and s=0 both correspond to all particles
reflecting. For an incident half-range Maxwellian, the cutoff
fraction equals the sticking fraction; however, when the flux
to the wall is nonzero, the incident distribution is not a half-
range Maxwellian.

III. LANGEVIN PARTICLE SIMULATIONS

Simulations are performed for particles suspended in a
gas in the vicinity of a wall. The gas is taken to be a thermal
bath at temperature 7, so its molecules are not directly simu-
lated. The stochastic motion of a particle of mass m at posi-
tion x with velocity u is described by the Langevin equation
[5,6] with particle drag coefficient B, constant drift velocity
U, and random thermal force X corresponding to the gas
conditions at temperature 7, which is appropriate when
the particle mass is large compared to the gas-molecule
mass [7]:

du

m—-=BU-w+X, (14)

—=u. (15)

Ermak and Buckholz [6] present an algorithm for integrat-
ing the Langevin equation forward in time based on the so-
lution of Chandrasekhar [5] to the generalized Fokker-Planck
equation for the distribution function N[¢,x,u] of a particle
with velocity u, and position X, at time #;, (i.e., an initial
distribution function of N[zy,x,u]=8x-x,]u—-ug]). In
particular, they present a method using two independent
Gaussian random vectors B, and B, to advance the particle

(13)

velocity and position from u, and x,, at time 7 to u and x at
time 7+ Az, where d=exp[-At/7]:
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The algorithm of Ermak and Buckholz is implemented in
an existing molecular-gas-dynamics code that tracks compu-
tational molecules which move, reflect from boundaries, and
stochastically collide with each other [4,10,11]. This ap-
proach takes advantage of the similarity between tracking
particles and molecules: the only significant difference is that
particles interact with a background fluid rather than collid-
ing with one another. Moreover, the particle-tracking imple-
mentation is massively parallel, with good scaling behavior
through 10 000 processors, and is therefore capable of simu-
lating billions of particles simultaneously [10,11].

Table I shows the gas and particle parameters used in the
Langevin simulations. Spherical PSL particles with a diam-
eter d=20 nm suspended in air at a pressure and temperature
of p=101325 Pa (1 atm) and T=300 K are considered, as in
recent experiments [2]. The gas-molecule mean free path
is defined as N=u/¢ppc, where u is the gas viscosity,
¢=51/32 is the mean-free-path constant, p=Mp/kgT is the
gas mass density, c=(8kgzT/wM)"? is the mean gas-molecule
speed, and M is the gas-molecule mass, and the particle
Knudsen number is Kn=2\/d=6.837. The drag coefficient is
given by B=3mud/C, where the numerator is Stokes drag
and the denominator is a slip correction factor of the form
C=1+Kn(a,+B;exp[—y,/Kn]) [1,2]. The experimentally
measured values of the three parameters in this expression
are used herein [2]. For these conditions, the particle thermal
stopping distance is €=7"2D/c=18.13 nm, which is compa-
rable to the particle diameter.

Table I also shows the numerical parameters used in these
simulations. A wall is located at x=0, and a particle source is
located at x=L, where L=1000 nm. This domain is divided
into cells of width Ax=4 nm, so the distance between the
wall and the particle source is spanned by 250 cells. In these
simulations, the only function of the cells is to sample the
properties of the particles resident within the cells at each
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TABLE I. Simulation parameters (air and PSL).

Quantity Symbol Value
Boltzmann constant kg 1.380658 X 1072 J/K
Molecular mass, gas M 4.811x 10720 kg
Pressure, gas p 101325 Pa
Temperature, gas T 300 K

Mass density, gas p 1.177 kg/m?3
Molecular mean speed, gas c 468.2 m/s
Viscosity, gas i 1.85X 1073 Pas
Hard-sphere parameter, gas ¢ 5m/32=0.491
Mean free path, gas A 68.37 nm
Diameter, particle d 20 nm

Mass density, particle S 1050 kg/m?
Mass, particle m 4.398 X 1072 kg
Knudsen number, particle Kn 6.837

Slip parameter, particle ay 1.165

Slip parameter, particle Bs 0.483

Slip parameter, particle Vs 0.997

Drag coefficient, particle B 2.950 X 10713 N/(m/s)
Stopping time, particle T 14.91 ns

Thermal speed scale, particle c 1.3724 m/s
Diffusivity, particle D 1.404 X 1078 m?/s
Stopping distance, particle 4 18.13 nm

Domain length L 1000 nm

Cell size Ax 4 nm

Time step At 0.5 ns
Steady-state time 1 10% ns

time step: no spatial “discretization” of the solution occurs.
Initially, the domain is devoid of particles. As time
progresses, particles enter the domain at a fixed rate from the
source (particles attempting to exit the domain at the source
are reflected specularly back into the domain), and particles
exit the domain at the wall according to one of the two
reflection processes discussed above. Time steps of
At=0.5 ns are used, and a time of 7;=10° ns is allowed to
pass before sampling is initiated to ensure that steady behav-
ior is established. The average particle number density in
each cell is determined by dividing the total number of par-
ticles sampled in the cell by the cell volume and by the
number of time steps over which sampling is performed.
Typical simulations use ~10° particles in the domain and
sample ~10° particles per cell over ~107 time steps of
steady behavior. Simulations typically require 96 hours on
200 processors of a Linux cluster (i.e., about 2 processor-
years).

Figure 1 shows particle-number-density profiles from
Langevin simulations for both reflection processes with a
zero drift velocity. The profiles are normalized so that the
particle number density is unity at the source (x=L). Profiles
are shown for five values of the sticking fraction s (curves)
and the cutoff parameter o (circles): 0.05, 0.1, 0.2, 0.5, and
1.0. Each cutoff-velocity profile lies slightly above the cor-
responding sticking-fraction profile except for the case of
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FIG. 1. Particle-number-density profiles from Langevin
simulations.

s=o=1, for which the two profiles are identical to within the
precision of the simulations. All profiles vary linearly with
position except near the wall. This near-wall region, located
roughly within 0=x/L<0.1 (0=x<100 nm, 0=x/ ¢ <5),
contains the particle Knudsen layer of each profile. The par-
ticle number density adjacent to the wall is nonzero for all
profiles.

Figure 2 shows the (near-wall) Knudsen layers for the
profiles in Fig. 1. Each Knudsen layer is determined by tak-
ing the difference between the actual profile and a straight-
line fit through its linear portion (i.e., away from the wall)
and subsequently dividing this difference by the slope of the
straight-line fit. This slope scaling is performed so that all
Knudsen layers are shown at the same particle flux. In all
cases except s=o=1, the departure of the Knudsen layer
from the corresponding straight-line fit is larger for the
cutoff-velocity reflection process than for the sticking-
fraction reflection process, and the departure increases as the
sticking fraction or the cutoff parameter is decreased (i.e., as
more particles are reflected by the wall).
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FIG. 2. Particle Knudsen layers from Langevin simulations.
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FIG. 3. Particle-flux coefficient for zero drift velocity.

IV. COMPARISON OF APPROXIMATION
AND SIMULATIONS

Figure 3 shows the particle-flux coefficient f as a function
of the sticking fraction s and the cutoff parameter o for a
drift velocity of zero. The particle-flux coefficient is deter-
mined in the following manner. A straight-line fit through the
linear portion of a profile (i.e., the portion outside the particle
Knudsen layer) yields a slope of (dn/dx), and an intercept
of ny at x=0. The particle-flux coefficient is found from
the particle-flux boundary condition of Eq. (9) according to
f=(m'"2D/cny)(dn/dx),. The symbols represent the simula-
tion values, and the solid curves connecting the simulation
values represent empirically determined correlations that rep-
resent the simulation values to =0.001 (their uncertainty):

_( s )<1+0.506s> 20)
F=\255 T 07s3s )

050+ 1.6650% — 1.843¢0°
T 1474120 - 12.45607 + 4.4260°

f (21)

The dashed curves in this figure represent the approxi-
mations given in Egs. (12) and (13). The differences between
the approximation and the simulation values are modest for
the sticking-fraction reflection process but are larger for the
cutoff-velocity reflection process. This is not surprising be-
cause for the cutoff-velocity reflection process the reflected
part of the incoming portion of the particle velocity distribu-
tion differs substantially in shape from the outgoing portion.
It is noted in passing that the dependence of the particle-flux
coefficient f on the sticking fraction s is similar to the
dependence of the temperature-jump coefficient f; on
the thermal accommodation coefficient « for Bhatnagar-
Gross-Krook gas molecules reflecting from a wall [12]:
fr—al(2-a) for a—0 and f;=0.850362 for a=1.

PHYSICAL REVIEW E 77, 036302 (2008)

2.0 T r y
Sticking Fraction s = 1 e
Cutoff Parameter 6 = 1 e
——= Approximation Vi
-— ' . ,
=15 O Simulations L ]
2 L
L Ve o
<
3 A
Q 7 <
o g &
X 1.0 + - Y
° -
Jo) T
S g
€
o 0.
a 0.5 f=1/2
away from wall toward wall
-
0.0 X .
-1.0 -0.5 0.0 0.5 1.0
Drift Velocity U/c

FIG. 4. Particle-flux coefficient for nonzero drift velocities.

Figure 4 shows the particle-flux coefficient f as a function

of the normalized drift velocity U=U/c when all particles
stick to the wall (s=o=1). The symbols represent the simu-
lation results, the dashed curve represents the approximation
[Eq. (12)] with s=1, and the dotted curves represent the
asymptotic behavior of the approximation for large positive
or negative values of the drift velocity. The differences be-
tween the simulation and approximation values are modest
and comparable to those observed in the preceding figure.

V. ADVECTION-DIFFUSION APPLICATION

The utility of the particle-flux boundary condition can be
illustrated through an example comparing Langevin particle
simulations and advection-diffusion results. The principal ad-
vantage of advection-diffusion simulations is that they gen-
erally require orders of magnitude less computational effort
than that required by particle-based simulation methods [10].
Thus, advection-diffusion simulations are preferred so long
as they are accurate.

A paradigmatic geometry often encountered in real sys-
tems (e.g., particle contamination in semiconductor manufac-
turing) involves two infinite parallel horizontal solid plates
separated by a distance L, where the gap between the plates
is filled with motionless gas at conditions that are nearly
independent of time and position. Particles with an equilib-
rium velocity distribution are placed at a distance H above
the lower plate (denoted “1”) and thus a distance L—H below
the upper plate (denoted “2”). An advection-diffusion analy-
sis using Egs. (9) and (10) yields the probabilities P and
1—P that particles deposit on the upper and lower plates,
respectively, where the drift velocity U is positive when
pointing downward (i.e., from plate 2 to plate 1) and the
arrow denotes the zero-drift-velocity limit:

ey=exp|HU/D], e;=exp[LU/D], (22)

V=m2Ulc, € =u"Dic, (23)
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In the further limit that the thermal stopping distance van-
ishes (€/L— 0), the zero-drift-velocity probability reduces to
the well-known expression H/L.

Rather than placing particles at a particular height, an
ensemble of particles is injected vertically upward from the
lower plate at a velocity U; and comes to rest at a height
H=U,7 above the lower plate. This height is used in the
advection-diffusion expressions above. However, if this
height exceeds the plate separation L, a fraction s, of the
particles sticks to the upper plate, and the remaining fraction
is specularly reflected downward and comes to rest at a
height H=2L-U,7. In this circumstance, this new height is
used in Egs. (22)—(25), but the probability of deposition on
the upper plate becomes s,+(1—s,)P. If this new height lies
below the lower plate, a fraction s; sticks to the lower plate,
the remaining fraction is reflected specularly upward, the
deposition probability is correspondingly modified, and so
forth.

Langevin particle simulations are performed for the above
situation and compared with Egs. (22)—(25). The gas is ni-
trogen at 295 K and 6.666 Pa (50 mtorr), the particles have a
mass density of 1000 kg/m?, and the slip-correction param-
eters are a,=1.207, B,=0.440, and y,=0.78 [2]. A plate
separation of 1 cm and an injection velocity of 10 m/s are
considered. Two sets of simulations are performed. In the
first set, the sticking fraction on both plates is s=1, but the
downward gravitational acceleration is varied within the
range 0-10g, where g=9.81 m/s% Thus, this set of simula-
tions contains cases with zero and nonzero drift velocities
since U=mg/ . In the second set, the gravitational accelera-
tion is maintained at a value of g, but the sticking fraction on
both plates is one of three values: s=1, 0.1, 0.01.

Figures 5 and 6 show the deposition probability from the
two simulation sets above. The symbols represent the values
from the Langevin particle simulations, and the curves rep-
resent the values from the advection-diffusion expressions.
Since a nonzero drift velocity is present in most of these
cases, the particle-flux coefficients in the advection-diffusion
expressions are evaluated using Eq. (12). In all cases, the
agreement is excellent. In particular, this includes the cases
in which the sticking fraction is not unity. For these cases,
the commonly used zero-particle-number-density boundary
condition would produce values close to the s=1 values in
Fig. 6, which differ greatly from the actual values. It is noted
in passing that nonmonotonic variations of aerosol quantities
with particle diameter typically occur because of the transi-
tion from free-molecular gas flow for small particles to con-
tinuum gas flow for large particles [1].
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FIG. 5. Effect of gravity on deposition probability.

VI. CONCLUSIONS

The above theoretical and numerical investigation indi-
cates that the particle number density of a nanoparticle aero-
sol tends to a nonzero value at a solid boundary (a wall) and
that this value is proportional to the flux to the wall and
depends upon the reflection process. A methodology is pre-
sented that enables an approximate advection-diffusion
boundary condition to be determined for arbitrary reflection
processes. Although developed for a flat surface, this bound-
ary condition can be used for a nonflat surface so long as its
radius of curvature is large compared to the thickness of the
particle Knudsen layer (corners do not satisfy this restric-
tion). The accuracy of advection-diffusion simulations using
this boundary condition can be quantified by comparison to
corresponding Langevin particle simulations.

1.0 v v - ——6—0
Symbols: Simulations
Curves: Approximation
s=1.00
o 08 .. s=0.10
2> -—— $=001
é
06
[
o.
s
= 04}
7
=] ,
§
o
0.2t P K
\Q\- . \
& v-0-0
~
0.0 " N , o aT g oo

0 20 40 60 80 100 120 140
Particle Diameter d (nm)

FIG. 6. Effect of sticking fraction on deposition probability.
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